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Simple expressions are derived for the form of the intensity distributions in high-resolution dark-field 
electron micrographs of thin specimens for which the phase-object approximation may be applied. For 
cases in which the phase change of the electron wave can be assumed to be small it is shown that there 
is an optimum defocus value which gives the best, interpretable resolution. For dark-field images ob- 
tained either with a central beam stop or with a tilted incident beam, the image intensity is shown to 
depend on the square of the deviation of the projected potential from an average value. The further 
complications resulting when the phase change cannot be assumed small are discussed and illustrated 
by means of a simple example. 

1. Introduction 

In recent years some important results have been ob- 
tained by the use of dark-field microscopy under condi- 
tions of high resolution. Although in comparison with 
bright-field imaging the method suffers because the in- 
creased exposure times required result in more serious 
radiation damage effects on the specimen, it is valuable 
in many cases because of the increased contrast pos- 
sible from very thin specimens. 

By use of the 'high-resolution dark-field' technique 
with a tilted incident beam, Hashimoto, Kumao, Hino, 
Yotsumoto & Ono (1971) obtained images showing, 
apparently, individual heavy atoms, similar to the 
images obtained by Crewe & Wall (1970), who used 
scanningtransmission electron microscopy (STEM) with 
a combination of an elastic-scattering dark-field image 
signal and an inelastic-scattering dark-field signal. For- 
manek, Muller, Hahn & Koller (1971) showed similar 
images in bright field. Highly successful applications of 
dark-field techniques for thin biological specimens have 
been made by Massover (1972) using the 3MeV electron 
microscope at Toulouse (Dupuoy, Perrier & Durrieu, 
1970). Various dark-field techniques, some involving 
annular apertures, have been developed by Heinemann 
& Poppa (1970) for revealing the lattice periodicities of 
thin metal crystals. Dark-field images from the diffuse 
scattering given in disordered materials have been used 
by various authors in attempts to derive information 
about the microstructure of amorphous solids and dis- 
ordered alloys. 

For bright-field electron microscopy of thin objects 
with high resolution (minimum resolvable distance less 
than about 20 A) it is now well established that the 
microscope image contrast can be predicted or inter- 
preted on the basis of the approximation which treats 
the specimen as a thin phase object, with some small 
absorption effect included for improved accuracy. Am- 
plitude contrast in the image is then obtained by an 
"optimum defocusing' of the objective lens. The limita- 

tions of specimen thickness and phase change for 
which this approximation is valid have been explored 
by detailed calculations of image intensities of model 
systems by Grinton & Cowley (1971). The application 
of this concept to the interpretation of high-resolution 
images of crystal lattices of inorganic oxides (Iijima, 
1971), where the phase change of the electron wave 
cannot be assumed to be small, has been explored by 
Cowley & Iijima (1972). 

For dark-field images an equivalent understanding 
of the contrast effects does not exist. For the most part 
authors seem to have relied on the simple, intuitively 
appealing concept that the dark-field image intensity 
is proportional to the scattering density in the object 
and is almost independent of focus. The aim of this 
paper is to demonstrate that in many cases this simple 
interpretation is wrong and may lead to serious errors 
in the deductions made regarding object structure. 

2. Thin-phase-object image theory 

The transmission function for a phase object is written 

q(xy) = exp { - ia~o(xy) } , (1) 

where a =  rc/2E, E is the accelerating voltage and rela- 
tivistically corrected values of 2 and E are assumed. The 
projection of the potential distribution of the object in 
the beam direction is 

= l (o(r)dz. (2) q)(xy) 

The effect of the object on a coherent incident electron 
wave is represented by multiplying the incident wave 
function by (1). This approximation ignores the spread 
of the wave inside the object by Fresnel diffraction and 
is valid for specimen thicknesses which depend on the 
wavelength, the resolution and the accuracy of the de- 
sired result but are of the order of 100 A for 3 A resolu- 
tion (Cowley & Iijima, 1972) or 300-500 A for 6 A re- 
solution (Grinton & Cowley 1971). 
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For an incident wave of amplitude unity the distribu- 
tion of amplitude on the back focal plane of an ideal 
lens is given by the Fourier transform (~-) of (1) as 

~ ( u v ) = O ( u v ) = ~ [ e x p  {-icr~o(xy)}] , (3) 

where capital letters are used for reciprocal-space func- 
tions of the coordinates u,v.  For an ideal thin lens of 
focal length f, u = x / f 2  and v = y [ f 2 .  

The effects of finite aperture and imperfections of the 
lens are included by multiplying (3) by an aperture 
function A(uv)  and a phase function 

exp [ -  iz(uv)] . 

It can be shown that for near-focus image the effect 
of the aperture function may be approximated by add- 
ing an effective absorption term, i.e. by making ~o(xy) !.o 
complex (Grinton & Cowley, 1971) or by multiplying 
(1) by exp {-p(xy)}.  For the small aperture sizes used 
in normal low-resolution biological electron microsco- 
py this term becomes the main source of contrast but it 
decreases as the aperture size increases and may be ig- 
nored as a first approximation for high-resolution o 
imaging. 

In the phase term modulating (3), we may write 

Z(uv) = n R 2  U 2 - ~- C ~31,[4 (4) v s . .  ~ , 

1.0 
where, on the right-hand side, U is used as a radial co- 
ordinate [=(uZ+v2)l /2].  The second-order term in U 1.o 
represents the effect of defocus (under focus) by a dis- 
tance R referred to the specimen. The fourth-order 
term arises from spherical aberration of the lens. We 
ignore the effects of other aberrations such as astgima- 
tism which may be made negligible. 0 

If we now make the 'weak phase object' approxima- 
tion, as used in consideration of very thin biological 
specimens or the imaging of single atoms (Scherzer, 
1949; Heidenreich & Hamming, 1965; Eisenhandler & 
Siegel, 1965; Erickson & Klug, 1970), we assume -1.o 
a~o(xy),~ 1; then (1) becomes 

q(xy )  = 1 - ia~o(xy) , 1.o 

and, including the phase term, (3) becomes 

~,(uv) = O ( u v ) -  aq~(uv) sin Z -  iaq~(uv) cos Z,  (5) 

-1.o 

~u(uv) = [fi(uv) - rr~b(uv) sin X -  M ( u v )  cos 2:] 

- i[a~(uv) cos Z -  M ( u v )  sin 2:]. (6) 

where M ( u v )  = ~' l . t (xy) .  
Considering (5) only, it is seen that ideal imaging con- 

ditions would result for X = n/2 for all U so that sin Y 
= 1 and the image amplitude would be given by Fourier 
transform of (5) as 

( x y) 
q/~(xy)+ l - a ~ o  - M ' - M ' 

where - M  is the magnification factor. The image in- 
tensity would then be, to first order in a~0, 

(x 
I ( x y ) = l ~ ( x y ) 1 2 =  1-2a(0 - M '  - . (7) 

As is well known, a reasonable approximation to this 
ideal situation is achieved for an optimum defocus, R. 
In Fig. 1 the values of sin Z and cos 2: are plotted for 
the value of Cs= 1.8 mm, which is appropriate for a 
good modern electron microscope. For R values of 
900 to 1000 A the value of sin Z is close to unity for a 
large part of the range of U which is of interest. The 
fact that in this range the value of cos 2: varies strongly 

c o/ 
O ~  0.3 

(a) 

\ \ 400  oo\\ 

o, \ ' / /  

( b )  

oJ 
or, with absorption, 

(c) 

~.3 u(~-~ ) 

Fig. 1. Variation of sin Z and cos X with U, the radial coordi- 
nate in reciprocal space, where X is the phase factor due to 
defocus, R, and spherical aberration with Cs=l'8 mm. 
Curves are drawn for (a)R=0 and -200 A, (b)R=-300 
and -400 A, (c) R = -900 and - 1000 A. 
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is not important because the imaginary part of (5) can 
contribute only second-order terms to the image inten- 
sity. However, the fact that cos Z -  1 for small U values 
means that the effect of the absorption included as in 
(6) will compensate partly for the low values of sin Z 
in this region since -M(uv)  will have roughly the same 
form as a~(uv).  

The favorable form of the image contrast for bright- 
field images given by (7) is obviously the result of 
combining the Fourier transform of the projected 
potential and the 6 function representing the trans- 
mitted beam, with the correct phase relationship. In 
dark-field imaging the same consideration cannot 
apply since the transmitted-beam ~ function is excluded. 
The oversimplified view of dark-field images is then 
that by making Z -  0, (5) becomes ~(uv) = - ia~(uv) 
and the image intensity is 

I ( x y ) = ~ r 2 ~ o 2 ( x y )  . (8) 
However, in addition to the central fi function due to 
the incident beam, other important parts of the diffrac- 
tion pattern are inevitably excluded, including iacP(0, 0), 

{a) 

-- -" -  _ • . . 

Fig. 2. (a) The 'ideal' dark-field condi t ion in which a small 
central stop intercepts the central beam of the diffraction 
pat tern but all the rest of the diffraction pattern within a 
large aperture is t ransmitted.  (b) The translated aperture or 
'high-resolution dark-field' condi t ion in which the aperture 
excludes the central beam. Dot ted  lines suggest the approxi- 
mat ion used to derive a rough model  for the effects of such 
an aperture.  (c) A small aperture well displaced from the 
central beam. 

the forward-scattered beam which is always the stron- 
gest part of the diffraction pattern. Hence in order to 
make more realistic estimates of dark-field contrast 
we must consider the effects of selecting only parti- 
cular parts of the diffraction pattern to contribute to 
the image. 

3 .  ' I d e a l '  d a r k  f i e l d - c e n t r a l  s t o p  

The form of dark-field image which might be considered 
to give the most easily interpreted contrast is the ideal- 
ized case in which a very small central stop intercepts 
the central bright spot of the diffraction pattern but 
very little else, as in Fig. 2(a). In the approximation of 
(5), the transmitted beam, J(uv) and the forward 
scattering maximum, of strength -iacP(0,0) are ex- 
cluded. 

Apart  from this omission the diffraction pattern 
amplitude is 

-iaq~(uv).  exp {ix(uv)} . 

The requirement for a readily interpreted image is that 
cos X(uv) and sin X(uv) should be almost constant over 
the range of U of interest. This condition is obviously 
not satisfied for the Lzright-field optimum defocus con- 
dition, Fig. l(e). For zero defocus cos X is nearly unity 
out to U=0.16 A -1 but s inz  deviates by 0.3 (which 
we take as an arbitrary limitation) for U=  0.13 A -  1. 
An improved situation exists with increasing R, with 
an optimum value of R of about 400 A for which 
c o s x ~ l  and Isin Xl <0.3 for U<0.2  A -1. Then for re- 
solutions of about 5 A in the image we may assume as 
a first approximation for this optimum dark field de- 
focus that Z ~ 0. 

The effect of the central stop is illustrated best for a 
periodic object, 

q~(xy) = ~,h~k q~hk exp { 2rci ( h--~ff + ~--) . (9) 

The diffraction pattern is a set of ~ functions: 
/ h k \  

~(uv) = ~i,~k ~hk6 ~U - a , V - -b-) " (10) 

The central stop then eliminates the unscattered beam, 
fi(uv), plus the zero-order beam -ia~ooO(uv). The 
image amplitude and intensity are then (apart from the 
magnification term): 

~,(xy) = - ia[~o(xy)- q~00] • (11) 

I(xy) = aZlq~(xy) - cP00l ~-. (12) 

But gS0o= S ~o(xy)dxdy, where the integration is over 
the unit cell. Similarly for non-periodic objects 
g~00 = ~, the average of the potential projection over a 
coherently illuminated region. Thus the image intensity 
is not a simple representation of the scattering density. 
In particular it is seen that both positive and negative 
deviations from an average projected potential will 
give intensity maxima. 



532 H I G H - R E S O L U T I O N  D A R K - F I E L D  E L E C T R O N  M I C R O S C O P Y .  I 

As a simple, familiar example, we consider the case 
of a projected potential of the form 

~o(xy) = A + B cos (2rex/a). 

The distribution in the back focal plane will be 

i a [ 6 ( u  1 ( u+  1 
~ u ( u , v ) = d ( u v ) [ 1 - i a A ] - ~  B - a )  +d  a ) ] "  

The ideal dark-field amplitude and intensity are 

~(xy)  = - iaB cos (2rex~a), 

I (xy)  = a2B 2 cos 2 (2rex~a). 

Thus the image intensity has half the periodicity of 
~0(xy). 

For more complicated structures the periodicity may 
possibly be reduced but cannot be increased. False im- 
pressions will be given of details of objects except in 
the case of sharp isolated potential maxima, e.g. well 
separated heavy atoms on a thin light-atom support. 

It is to be expected that the value of ~0(xy)-~ will 
usually pass through zero around the base of any iso- 
lated prominent maximum or minimum of ~0(xy). 
Hence bright peaks in the intensity distribution will 
tend to be surrounded by dark rings. 

Some modification of the above considerations must 
be made in practice to take account of the finite size 
of the central beam stop which is used. A disc of finite 
size will remove some of the diffraction pattern sur- 
rounding the zero-order reflection. This is equivalent 
to multiplying ~,(uv) by 

S(uv)= I" l if U > A / 2  

I 0 if U< A / 2 .  

Thus the image amplitude is convoluted with 

where 
s(xy) = 6(xy) - J~(rcAr )/(rcr ) , 

r = (x 2 +y2)~/2. 

Instead of ~00 in (11) we then have 

~o(xy)*Jl(rcAr)/(rcr) 

which tends to ~b00 as A -+ 0 .  
The implication of this convolution is that the 

average ¢ is taken over an area of diameter approxi- 
mately equal to A-1. For example, the center of a dark 
field of a hole in a thin film will appear bright if its 
diameter D is much less than A -1 but it will appear 
dark (zero intensity) if D >~ A-  1 

An additional consideration is that the averaging 
of ~ cannot be made over a region greater than the 
area of lateral coherence of the incident beam which 
is inversely proportional to the angle of convergence of 
the beam. This will impose no further limitation if the 
central-beam stop is considerably greater than the 
incident-beam spot in the diffraction pattern. 

The presence of inelastic scattering around the inci- 
dent beam position should not normally have an ap- 

preciable effect on the image intensity distribution. 
The small-angle inelastic scattering due to electron 
excitations will mostly be stopped by the central-beam 
stop. Wider-angle scattering which passes the beam 
stop will presumably have relatively large energy 
losses and the chromatic aberrations of the imaging 
lenses will ensure that this will contribute only a diffuse 
background to a high-resolution image. 

4. Translated-aperture or 'high-resolution' dark field: 
large aperture 

If the dark-field image is obtained by translating the 
objective aperture in an electron microscope or by 
tilting the incident-beam direction, the situation in the 
back focal plane can be represented as in Fig. 2(b), 
where we have taken the aperture diameter to be of 
roughly the same size as the maximum range of U 
and positioned so that it just excludes the central beam. 

The most important difference between these two 
forms of dark-field image in practice arises from the 
large chromatic-aberration effects for the off-axis 
imaging with the translated aperture. However for high- 
resolution work there is an additional difference. For 
displaced-aperture imaging the whole aperture lies to 
one side of the U= 0 point on the curves of Fig. 1, i.e. 
the diameter of the aperture must be less than the 
Umax values marked in Fig. 1 if a simple interpretation 
of the image is to be possible. For the tilted-beam 
illumination the center of the aperture is on the lens 
axis, the aperture function is centered at U = 0 for these 
curves and the diameter of the aperture may be 2Umax. 
Hence for the tilted-beam 'high-resolution case' the 
aperture diameter over which 2 '~0  can be twice as 
great, with a corresponding possible advantage in 
resolution. 

If, as a first approximation, we assume 2 '=0  for the 
aperture used, then the effect of placing an aperture 
asymmetrically in the diffraction pattern in the back 
focal plane can be represented formally by writing 

~,(uv) =- ia~(uv) .  [A(U),6(U-Uo)], (13) 
where A ( U )  is a symmetrical aperture of radius less 
than u0. The image intensity can then be calculated 
numerically by Fourier transform of(13) for any par- 
ticular case. However, we prefer to seek an indication 
of the nature of the effects on the image, however 
rough, by making approximations which will provide 
results which can be expressed analytically. 

One way of doing this to assume that the aperture 
used is the same as for the ideal dark-field imaging of 
the previous section but with half cut off by a straight 
edge, as suggested by the dotted outline in Fig. 2(b). 
The back-focal-plane amplitude is then 

where 
- ia[~(uv) - '/'006(uv)] • H ( u ) ,  

H(u)=  [ 0 i f  u < 0 ,  

l 1 if u > 0 .  

(14) 



J. M. COWLEY 533 

The Fourier transform of H(u) is 

i 
h(x) = ½O(x) + 2~--7 " (15) 

The image amplitude is then convoluted by (15). But 
this does not lend itself to easy evaluation except 
numerically. 

Instead we may approximate to H(u) using functions 
which may be readily Fourier transformed, for ex- 
ample by the series. 

½+ ~,, oad C,U" exp {-UZ/AZ,,}, 

with appropriate choice of the constants C, and A,. The 
first term of this series, n = 1 is seen in Fig. 3 to give a 
reasonable approximation to H(u) over the range of u 
values which are of most significance. 

We note that we must now Fourier transform 

~t(uv). u.  exp {--u2/A 2} 
and the Fourier transform of u ~u(uv) is proportional 
to 3/3x{~o(xy)}. Choosing appropriate values for C and 
A so that the first term of (1.6) fits H(u) reasonably well 
from u=0.05 to 0.30 A -1, the dark-field image ampli- 
tude may be expressed approximately as 

° [ ] ~u(xy)= ~- {~0(xy)-~} + i 0.465 a~o(xy) 

• exp {-xZ/2.5}] 

and 

I(xy) = [ 2  {~0(xy)-9}] z+ [0"465 (~x {crcp(xy)}) 

(17) 

• exp {-xZ/2.5 , 

where x is in A. The convolution of the derivative with 
the Gaussian should give only a slight broadening of 
the function because the half-width of the Gaussian is 
only about 1.6 A. 

Hence the effect of eliminating approximately half 
the diffraction pattern by use of the off-center aperture 
can be seen to be the addition of a contribution to the 
image intensity proportional to the magnitude squared 
of the differential of ~o(xy) taken in the direction of the 
aperture displacement. Thus a symmetrical peak in 

"t'- 
--0.2 --0.1 

I I 

¢ ¢  % 

! I ' I 

t 
/ 0.1 0.2 0.3 

/ U in ~_1 

Fig. 3. The approximation to a step function by means of the 
differential of a Gaussian. 

~o(xy) will give an intensity maximum elongated in the 
x direction. The effect could be quite similar to that of 
astigmatism and could possibly be 'corrected' to give 
a symmetrical peak by adjustment of the objective lens 
stigmators. As in the case of the central beam stop, the 
region over which ~ is averaged in (18) will depend in 
practice on the lateral coherence of the incident beam 
and the distance from the central spot to the aperture 
edge. 

As a critical test of the expressions (17) and (18) we 
consider again the simple test object having 

~o(xy) = A + B cos (2rex~a). 

Use of a displaced aperture will remove two of the 
three O-function peaks in the back focal plane. Then in 
the image plane we should have 

~u(xy)=½B[cos (2rcx/a)-i sin (2z~x/a)] (19) 

and I(xy) = BZ/4. 
The use of equation (17) gives a different form for 

the amplitude for each periodicity but this can be made 
close to (19) in the range of interest. For example, for 

a = 15 7~, g/(xy) = ½B[cos (2rex~a) 
- i  0.96 sin (2zcx/a)], 

a =  10 A, ~u(xy)=½B[cos (2~zx/a) 
- i  1.28 sin (2rcx/a)], 

a= 5 A, ~(xy)= ½B[cos (Drx/a) 
- i  1.20 sin (2zcx/a)], 

a = 4  A, N(xy)=½B[cos (2rex/a) 
- i  0.84 sin (2rex/a)]. 

For more general types of object it might be expected 
that the defects of this simple model might be less ob- 
vious. 

5. Dark field with small apertures 

For a great deal of work on crystals, including the 
study of crystal defects, dark-field images are frequently 
obtained using a relatively small aperture centered at a 
distance from the central beam which is large compared 
with its diameter, as suggested in Fig. 2(c). The pur- 
pose is usually to find the distribution or form of the 
part of the specimen giving rise to a particular feature 
of the diffraction pattern and the method has most 
frequently been applied to the study of crystals which 
are too thick to be considered within the framework 
of the phase-object approximation and where con- 
siderations of high resolution are not involved. How- 
ever there are some cases of this sort where our treat- 
ment is relevant and these will be considered briefly 
below. 

For these cases there seems to be little point in at- 
tempting extensions of the previous sections and each 
case must be treated individually. 

(a) A diffracted beam and surrounding scattering 
To a reasonable approximation a strong diffracted 

beam from a thin crystal can be considered as a re- 
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directed plane incident wave. The diffraction spot is 
surrounded by scattering corresponding to the shape 
transform of the regions giving the diffracted beam. 
Hence under the 'high-resolution dark-field' conditions 
with the incident beam tilted so that the diffracted beam 
is axial, the imaging resembles bright-field imaging 
with the important difference that the incident beam 
6 function, n/2 out of phase with the first-order scat- 
tered radiation, is missing. Hence the optimum defocus 
position is such that X 2 0 for the largest possible area 
of the back focal plane. For the conditions of Fig. 1 
this implies optimum imaging for 300-400 A under- 
focus. 

(b ) Several diffracted beams from one crystal 
Images of crystal lattices showing the periodicity of 

the unit cell may be obtained when the objective aper- 
ture transmits more than one diffraction spot from 
the crystal. It is readily shown that the intensity distri- 
bution within the unit-cell periodicity will in general 
bear no simple relationship to the crystal structure. In 
the limiting case of very thin crystals and first-order 
scattering only, the intensity distribution in the image 
will be, from (9), 

! 

I ( x y ) = g g * ( x y ) =  I ~ £ ~ k  exp {iZhk} 
I 

where the primes on the summations indicate that only 
spots transmitted by the aperture are included and 
2'~k is the value for the hk reflection. With increasing 
crystal thickness the first-order scattering theory fails 
(for 10-50 A thickness for medium-weight atoms) and 
the relation of image to crystal structure rapidly be- 
comes more complicated. 

(c) Diffuse scattering from disorder or defects in crystals 
If the objective aperture excludes all diffraction spots 

given by a crystal and transmits only the diffuse scat- 
tering due to defects or disorder, involving displace- 
ment or replacement of atoms, the image may provide 
information regarding the nature and form of the 
deviations from the periodicity of the crystal. This 
dark-field method is becoming of increasing import- 
ance for defect and disorder studies and will be treated 
in detail in a further paper of this series. We limit our- 
selves here to a brief summary. 

The diffuse scattering is given, kinematically, by the 
deviations from the average periodic structure. Hence 
we write 

q~(xy) = ~(xy) + A~o(xy) , (22) 

where cp is the average, periodic structure and the non- 
periodic deviation Atp is defined so that (Atp)=0. 
Then the image intensity in the ideal-ease dark-field 
situation will be given by 

Z(xy)= lA~o(xy)l' . (23) 

Hence both positive and negative deviations from the 
average structure will give intensity maxima. 

The same considerations apply to the images ob- 
tained from diffuse scattering from amorphous or 
semicrystalline materials where the deviation from the 
average potential, Atp, may be identified with ~o(xy)-c~, 
considered in §§ 3 and 4 above. The small size of 
the aperture assumed in the present case generally 
precludes the resolution of unit cell periodicities. 

Further complication arise when the magnitude of 
the deviations Atp(xy) is such that it cannot be assumed 
that aA~o(x),)< 1, or when strong dynamical scattering 
of reflections from an average periodic lattice modifies 
the diffuse scattering. 

6. Phase objects with large phase changes 

Particularly in the presence of atoms of medium or 
high atomic number and for crystalline specimens, the 
values of a~o(xy) may greatly exceed unity within the 
thickness range for which the phase object approxima- 
tion (1) is valid. Then the approximation leading to (5) 
cannot be used and we must write instead, 

q(xy) = cos o-rp(xy) - i sin a~o(xy), 

~,(uv) = C(uv) cos X - S(uv) sin X -  i[C(uv) sin 2' 

+ S(uv) cos X], (24) 

where C(u) and S(u) are the Fourier transforms of 
cos a~o(xy) and sin a~o(xy) and are real functions only 
if aq)(xy) has a center of symmetry, which we may as- 
sume for convenience. It is then difficult to comprehend 
the form of the resulting bright-field or dark-field 
images without extensive computing for each particu- 
lar object. For imaging with limited resolution (spheri- 
cal aberration not important) one may use the approxi- 
mation of Cowley & Moodie (1960) that the contrast 
for small defocus is proportional to the projected 
charge density (see Anstis, Lynch, Moodie & O'Keefe, 
1973). The very approximate treatment of bright- 
field imaging of thin crystals given by Cowley & 
Iijima (1972) suggests that, under the optimum 
defocus conditions, the image will give much the 
same representation of the projected structure as 
for small phase changes with the important differ- 
ence that with increasing phase change (or for 
increasing thickness of crystals seen in principal orien- 
tations) the maxima of image contrast cease to increase 
proportionately. This behavior has been confirmed 
for particular crystals by computations of image in- 
tensities using complete n-beam dynamical diffraction 
theory (Fejes, 1972; O'Keefe, 1972), which showed ex- 
cellent agreement with the experimental observations 
of Iijima (1971). 

For dark-field imaging we may obtain relatively 
simple expressions for the intensity if we make the 
approximation used above that, for the optimum de- 
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focus, Z ~- 0 so that 

V(uv) = C(uv)- iS(uv) . (25) 

For the ideal dark-field conditions with a small central 
stop we assume that only the zero beam is excluded. 
This has amplitude Co-iSo, where 

'I Co = ~- cos a~o(xy)dxdy 

' l  So= ~- sin aCn(xy)dxdy (26) 

where A is the area of integration. 
The image amplitude and intensity are then 

~s(xy) =[cos a~o(xy)-Col-i[sin a~0(xy)- S0], (27) 

I(xy)=(1 + C~ + S~)-2[C0cos a~o(xy) 
+ So sin aq~(xy)]. (28) 

It can be seen that for small a09 values (27) and (28) 
reduce to (11) and (12) respectively. 

For an intermediate stage of approximation we may 
write that, for the ideal dark-field image 

V(xy)=exp {- iag(xy)}-ex  p {-ia(xy)} 
=exp {--imp}[exp { -- ia{(o -- (p)} 

--exp {-- ia(fp-~)}]. (29) 

i N. £ 
-f b ,--___.IR 

t 

b 1 a 
-5----Y6 ¢ ff R= 3 

Fig. 4. Model object with projected potential in the form of 
triangular peaks. The coherent loss of resolution is given by 
convolution with a Gaussian of half-width R. 
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Fig. 5. Bright-field contrast and dark-field intensity (arbitrary 
scale) calculated for the model object of Fig. 4 as a func- 
tion of the peak phase change in radians. 

But 
0-2 

exp {-- ia(~o--~)} = 1 -- i a ( p -  ~)-- ~ ((o-- ¢) z 

_ exp ( -- M) where M = ½az(~o - cp) z, 
so that 

I(xy) ~_ 1 +exp { - 2 M } - 2  exp { - M }  cos o'(~o- ~5). 
(30) 

This suggests that the intensity is given by (12) if 
a(~0-~) is small but as this quantity increase the in- 
tensity oscillates about a limiting value. In order to 
deal with the cases of translated-aperture or 'high-reso- 
lution' dark field, we may apply the approximations 
used in § 4 above. As before, we have the relationship 
that, if the 'ideal' dark-field amplitude is Vo, then 

i O 
~(xy) = ½~o(xy) + -~ C1 -~x ~o(xy) (31) 

where 6'1 is the constant of (17) and we have omitted 
the convolution with the Gaussian. 

Applying this to ~o from (27) we obtain 

~,(xy)= [ (1 - C--~a~°') c ° s a ~ ° - C ° ] n  

sino -q, 
and 

~ , ( x y )  [1 C~ a~o'] z 
= - - -  + c ~ + s ~  

7~ 

- 2  ( 1 -  C' a~0 ' ) .  [Co cos aq9 + So sin a~o] , (33) 

where the prime on ~0' indicates the differential. 

7. An example  

Although it is not possible to find simple analytical forms 
for expressions such as (28) and (33) in general, this 
can be done for a few model objects. For example we 
consider the periodic object with triangular peaks of 
potential represented in Fig. 4. Peaks of total width b 
and height A are repeated at distances a. There is a 
coherent loss of resolution due to aperture limitation 
represented by convolution of the image amplitude by 
a Gaussian of half-width R. We assume a > R>>b. 

To calculate dark-field intensity for the central-stop 
case we assume Z_~0 and obtain, in reasonable ap- 
proximation, 

b 2 a _xZ/RZ } IDv(xy) = ~ 1 - - - ~  exp { 

[(1 ~fl__)z (1 C°AA)Z ] x - + - . (34) 

In Fig. 5 the values of peak dark-field intensity are 
plotted as a function of A, the maximum phase change 
measured in radians, for b/a = O. 1, a/nR = 3. It is seen 
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that the inital parabolic shape of the curve is soon lost 
and the peak intensity appears to oscillate about a 
constant value for large A. In this respect the behavior 
is similar to that previously found for bright-field con- 
trast (Cowley & Iijima, 1972) and will lead to the same 
sort of considerations for the interpretation of crystal 
lattice images. The approximation of equation (30) is 
seen to be an improvement on that of equation (12). 

8. Conclusions 

It is evident that the assumption that dark-field images 
may be simply interpreted in terms of a density of 
scattering matter is usually far from being correct for 
high-resolution imaging of thin objects. We have 
shown that under the optimum defocus conditions it 
is possible to obtain a relatively simple expression for 
the image intensity for the case of very small phase 
change and an indication of the behavior with in- 
creasing phase change. However the intensity does not 
depend directly on the density of scattering matter, but 
rather depends on the square of the deviation from 
an average value of the projected potential. Positive 
and negative deviations will give the same intensities so 
that, for example, a hole and a heavy-atom inclusion 
in a light-atom matrix could give the same contrast. 

As in bright-field imaging, the possibility of inter- 
preting the image intensity in a reasonably straight- 
forward way depends on obtaining the correct amount 
of defocus. As can be deduced readily from the curves 
of Fig. 1 taken in conjunction with equation (5), the 
relative phase of the different parts of the diffraction 
pattern may be varied through large angles by change 
of R. However, this dependence is less severe than for 
a bright-field image because for small defocus the main 
weighting factor for the amplitudes is the cos Z function 
which varies less rapidly than sin 2'. For example for 
u < 0.13 (i.e. for a resolution of 7 A) the change of R 
from 0 to 400 A will not make much difference to the 
dark-field image under the conditions for which Fig. 1 
applies. 

For dark-field images which can be easily interpreted 
the maximum aperture size which can be used is less 
than for bright field. From Fig. l(a), the optimum de- 
focus dark-field condition applies for I UI_<0-20 
whereas for bright field it is possible to use I UI_< 0.28. 
However, in bright-field imaging the most important 
interference process is between the diffracted beam and 
the incident beam, with a maximum difference in U 
of Urn,x(=0"28 A- l ) ;  in dark field the primary inter- 
ference is between diffracted beams which may be 
separated by 2Umax(= 0"40 A-l) .  Hence the dark-field 
image may show detail on a finer scale and so have a 
better 'resolution' in some cases. 

For the practical application of dark-field images 
there is the important experimental problem of deter- 
mining the defocus distance, since the minimum con- 
trast criterion for determining exact focus for bright 
field does not apply, and Fresnel fringes are not usually 
visible. Some criteria for obtaining optimum focus will 
be discussed in a future publication. 

All the above considerations of image contrast may 
be seen to apply equally to the appropriate configura- 
tions for scanning transmission electron microscopy 
by application of the reciprocity relationship (Cowley, 
1969) and, by extension, the necessary modifications 
of the simple theory which has been applied to the 
ratio-signal imaging scheme of Crewe et al. (1970) may 
be inferred. 

This work was supported by a grant from the Na- 
tional Institute for General Medical Sciences, GM 
18204. The author is grateful to Dr Robert Glaeser 
for some critical comments on the manuscript. 
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